Effect of Toxicity of *Hyoscyamus niger* leaf extract on *Heteropneustes fossilis* (Cat Fish)

By

T.S. Naqvi

ISSN 0970-4973 Print ISSN 2319-3077 Online/Electronic

Global Impact factor of Journal: 0.756 Scientific Journals Impact Factor: 3.285 Index Copernicus International Value IC Value of Journal 6.01 Poland, Europe

J. Biol. Chem. Research Volume 31 (2) 2014 Pages No. 1256-1262

Journal of Biological and Chemical Research

An International Peer reviewed Journal of Life Sciences and Chemistry

Indexed, Abstracted and Cited in Various National and International Scientific Databases of the World

Published by Society for Advancement of Sciences®

J. Biol. Chem. Research. Vol. 31, No. 2:, 1256-1262 (2014) (An International Peer reviewed Journal of Life Sciences and Chemistry) Ms 32/1/210/2014 All rights reserved ISSN 2319-3077 (Online/Electronic) ISSN 0970-4973 (Print)

Dr. T.S. Naqvi http:// <u>www.sasjournals.com</u> http:// <u>www.jbcr.in</u> <u>jbiolchemres@gmail.com</u> <u>info@jbcr.in</u>

RESEARCH PAPER

Received: 10/10/2014

Revised: 28/11/2014

Accepted: 29/11/2014

Effect of Toxicity of *Hyoscyamus niger* leaf extract on *Heteropneustes fossilis* (Cat Fish)

T.S. Naqvi

Department of Zoology, Shia P.G. College, Lucknow, U.P., India

ABSTRACT

Ninety Six hours of toxicity test was conducted to observe the lethal concentration (LC_{50}) value of Hyoscyamus niger leaf extract on Heteropneustes fossilis. The fishes were exposed to seven different concentrations of the extract (20 mg 1⁻¹, 40 mg 1⁻¹, 50 mg 1⁻¹, 60 mg 1⁻¹, 70 mg 1⁻¹ and 80 mg 1⁻¹) for toxicity test and one remained as control. The LC_{50} value of H. niger in H. fossilis was found to be 50 mg 1⁻¹ for 96 hours exposure periods. Analysis of variance for the effect of the extract on the percentage mortality of fish showed a significant relation between both the factors (p<0.05, F=13.42). The correlation coefficient between concentration and mortality of fish was calculated (R = 0.714) and showed a strong positive correlation between different concentrations of the leaf extract and mortality percentage of fish. The present finding established that H. niger has potential toxic effect on fish and could be use widely to control undesirable fishes. Keywords: Fish toxicity, Hyoscyamus niger, LC_{50} value and Heteropneustes fossilis.

INTRODUCTION

In aquaculture production control of predatory undesirable fishes are required as predatory fishes not only reduced the fish productivity by consuming the targeted fishes, side by side they also destroy the natural habitat of the ecosystem. Synthetic pesticide use widely to kill predatory fishes, but due to their long time residual effects, less biodegradable and harmful effect to other organisms. Moreover extensive and indiscriminate use of chemical pesticides is a mega threat to aquatic ecosystem and biodiversity. Thus use of biodegradable natural compounds gaining popularity and importance today. Moreover, the toxic effects of plant derivatives degraded within 7-12 days, they are safer to use and the fishes killed from such toxicants can be consumed by humans [Charkoff, 1976].

There are several plant derived biodegradable compounds which are now widely used to control such fishes [Kumar et al., 2010, Ramanujam and Dominic, 2012, Singh and Singh, 2009, Pandey et al., 2009, Suely et al., 2015, Yumnam and Tripathi, 2013, Chiayvareesajja et al., 1997]. A large number of plant and their products being used as fish poison and H. niger, (Family: Solanaceae) crude extract can be used as piscicides in fish farming [Yumnam and Tripathi, 2013]. Toxicity of black henbane (Hyoscyamus niger) is earlier reported in mica and human being (Alizadah et al., 2014). The fish *Heteropneustes fossilis* belongs to the family Heteropneustidae is an air-breathing hardy carnivore fish. It is found in almost all fresh water bodies including muddy, marshy and derelict ponds having low levels of water and dissolved oxygen or even in contaminated water [Ahmed et al., 2013]. Heteropneustes fossilis has been reported to use as a model fish in aquatic toxicology [Ahmed et al., 2013, Joshi and Sahu, 2007]. The degree of toxicity as well as piscicidal activity of any plant extract can be assessed by exposing fishes to it and subsequent estimation of the median lethal concentration (LC₅₀) [Ramanujam and Dominic, 2012]. No works has been reported on piscicidal effects of *H. niger* against *Heteropneustes fossilis*. In this context an attempt has been made to see piscidal effects of H. niger leaf extract on Heteropneustes fossilis.

MATERIALS AND METHODS

Collection of Hyoscyamus niger leaf

The present study was carried out on cat fish. The leaves of *H. niger* were collected from field of CIMAP-CSIR, Lucknow, U.P., India. The collected leaves were then sun dried after collection and also grinded by using an electric grinder / mixer.

Organic solvent extraction

The phytochemical analysis of the leaf dried powder was done by using different extraction process as well as by using different solvents. Two solvents were used i.e. 70% ethanol and double distilled water.

Collection and acclimatization H. fossilis

Healthy fingerlings of *H. fossilis* (average length and weight of 12.16 \pm 0.78 mm and 10 \pm 0.97 gm) was purchased from the local fish market and maintained in cemented cistern for 3 weeks, prior to the experiment for acclimatization. The fishes were feed with pelleted feed and maintained with optimum level of water quality. Fish tanks were well aerated and the water was exchanged with fresh water as and when required.

Toxicity test

For 96 hour median lethal concentration value (LC₅₀), the experiments were conducted in glass aquariums filled with 15 litre of chlorine free tap water. Taking into account the moisture content of the extract, different concentrations of the extract (20 mg 1⁻¹, 40 mg 1⁻¹, 50 mg 1⁻¹, 60 mg 1⁻¹, 70 mg 1⁻¹ and 80 mg 1⁻¹) were made by adding the extracts proportionately to the water of the aquarium. In each aquarium, 20 fishes were kept and exposed to different concentrations as above with replications. In control, no extract was added and the fishes were maintained in the water without extract concentration. The stinging catfish, *H. fossilis* was exposed to aqueous leaf extract for 144 hours by using standard procedure used for toxicity test [APHA, AWWA, WEF, 2012]. Feeding of fishes was stopped during the experiment period. Hypoxic condition of water was avoided by adequate aeration.

The tested fishes were kept under continuous observation during the experimental period. The behaviour of the fish were observed and recorded from time to time. The mortality rate was recorded periodically in each aquarium. The dead fishes were removed and preserved for further investigation. The LC₅₀ value of the fish species was calculated by using Probit analysis method (Finney, 1971).

Water quality parameters

Some physicochemical parameter of water such as Dissolved Oxygen (DO), free carbon dioxide (CO_2), total alkalinity were studied. Water quality parameter during median lethal test for 144 hour experiment were analyzed at the beginning and end of the experiment by using the methods described in APHA [APHA, AWWA, WEF, 2012].

Statistical analysis H. niger

The LC50 value of *H. niger* for *H. fossilis* was calculated using Probit analysis method (Finney's, 1971). One way ANOVA were performed using SPSS software to assess the effect on concentration on the mortality of fish. The regression analysis were done by Microsoft excel to assess the relation between mortality and exposure period in different concentration of aqueous extract of *H. niger*.

RESULTS AND DISCUSSION

Toxicity test

The LC₅₀ value of *H. fossilis* was found 60 mg 1⁻¹ and the relationship between the leaf extract of and concentrations and the mortality rate was noted. Analysis of variance for the effect of the extract on the percentage mortality of fish showed a significant relation between both the factors (p<0.05). The correlation coefficient between concentration and mortality of fish was calculated (R = 0.714; and showed a strong positive correlation between different concentrations of the leaf extracts and mortality percentage of fish. Similarly, the correlation regression analysis between different mortality of fish and exposure period also show a strong positive relation with correlation coefficient (R value of 0.742, 0.746, 0.442, 0.848, 0.843, 0.843 and 0.843) for different concentrations (20 mg 1⁻¹, 40 mg 1⁻¹, 50 mg 1⁻¹, 60 mg 1⁻¹, 70 mg 1⁻¹ and 80 mg 1⁻¹). No mortality was reported in control. [2] Reported LC₅₀ values for aqueous extract of *Euphorbia tirucalli* latex at various exposure periods of catfish *Heteropnuestes fossilis* were 3.450 mg 1⁻¹ for 24 h, 2.516 mg 1⁻¹ for 48 h, 1.623 mg 1⁻¹ for 72 h and 1.315 mg 1⁻¹ for 96 h. [Ramanujam and Dominic, 2012] Found that the LC50 values of dimethoate on freshwater catfish, *Heteropnuestes fossilis* was 3.38, 3.23, 3.08 and 2.98 mg l-1 for 24, 48, 72 and 96 hours respectively.

The LC₅₀ values of *H. niger* leaf extract against *H. fossilis* was found 70.1 mg l-1 which is comparable with those of the findings as reported and conducted with various other botanical extracts. Increase in fish mortality over time could be due to activities of some factors that may act individually or synergistically [Singh and Singh, 2009]. The report of the present study was similar with the report of many works who have reported on tolerance limit of various plant extract with different cat fish. The 96 hour LC₅₀ extracts *Nicotiana tobaccum* values have been reported as 626.0 mg l-1 against *Clarius garipenus* [Omoniyi et al., 2002]. Reported that LC₅₀ value of *Terminalia arjuna* berk extract on a freshwater catfish *Heteropnuestes fossilis* were found to be 12.7, 8.94, 5.63 and 4.71 mg 1⁻¹ for 24, 48, 72 and 96 h, respectively at 96 hours exposure.

The LC_{50} value Zanthoxylum rhetsa in Heteropnuestes fossilis was found to be 70.1 mg / l in 96 hours toxicity test as reported by Jomang et al., 2017.

The 96-h LC₅₀ values from plant derivatives studied by several authors and reported the value was 124.0 mg l-1 for *Moringa oleifera* seed extract against *Cyprinus carpio* [Kavitha et al., 2012], 4.8 g l-1 against of neem leaf extract against *Prochildu lineatus* [Winkaler et al., 2007], 56.8 mg 1⁻¹ for alcoholic extract of *Euphorbia royleana* [Tiwari et al., 2004] and 54.65 mg l-1 for alcoholic extract of *Nerium indicum* leaf against *Channa punctatus* [Mishra et al, 2005, Srivastava et al., 1995]. Studied the 96-h LC₅₀ values by using synthetic chemicals such as malachite green and cypermethrinn and found the value as 5.6 and 7.2 mg l-1 respectively against *H. fossilis*. While dimethoate was used as fish toxicant the 96-h LC₅₀ value was reported 65 mg 1⁻¹ for *Clarias batrachus* [Begum and Vijayaraghavan, 1995], 47 mg 1⁻¹ (96 hr) for *Channa punctatus* [Dikshith and Raizada, 1981] and 17.9 mg 1⁻¹ (24 hrs) for *C. punctatus* [Srivastava and Singh, 2001].

[Rajput and Gaur, 2015] Reported a sub-lethal dose of *Mohua* extract as 100 mg 1⁻¹ against *Clarius batracus*. [Kulakkattolickal, 1989] Also reported different pisicidal plant from Nepal against catfish like *Ophiocephalus punctatus*, *Clarias batrachus* and *Heteropneustes fossilis* with LC_{50} value of 90 mg 1⁻¹, 102.4 mg 1⁻¹ and 109.1 mg 1⁻¹ respectively. The LC_{50} value of plant based pisicide for catfish are on an average higher than the LC_{50} value for carps, the reason may be due to the hardy nature of catfish. This comparison have revealed higher potential of *Zanthoxylum rhetsa* extract as piscicide due to its lower LC_{50} values than those of other plant extracts. However, a lower 96 hour LC_{50} (12.7 mg 1⁻¹) has been reported for *Terminalia arjuna*, the reason may be a better extraction of phytochemical using more sophisticated analytical tool for extraction.

Behavioural changes in *Heteropneustes fossilis*

At different exposure periods (24, 48, 72 and 96 hour), the behavioral alteration in *Heteropneustes fossilis* was observed carefully. Behavioral changes observed during 144 hours exposure period depicted in the Table 1.

Behavioral changes	
1-18	Fishes were jumping and moving
	away from the extract.
19-36	Trying to jump out from water.
37-48	Discolouration of skin was
	observed in comparison to
	control fish.
49-72	Fish exhibited more opercula
	movement, increased mucous
	secretion and progressively
	became sluggish and lethargic
73-96	Mucus secretion in skin, settled
	down on aquarium bottom.

Table 1. Behavioral change of Heteropneustes fossilis during 96 hour exposed period Exposure periods (hour).

The changes observed in the treated group after exposure were not observed in fish in control which demonstrate that the effect was due to exposure into extract mix water. The fish show swimming and jumping out of the extract medium which can be correlated with adaptive mechanism of fish. Changes in breathing rate and or jumping frequencies are the general symptoms noticed in the fish after exposure to the toxicant and these activities help the fish to avoid contact with poison and fight against stress.

With increase in time of exposure the energy content get drained out gradually leading to lethargic state in final stage of exposure. Excessive mucus secretion and accumulation in the fishes exposed to toxicant was observed in the treated fish which may be an adoptive response providing additional protection against corrosive nature of the extract to the sensitive dermal layer of skin and they avoid the absorptions of the toxicant by the general body surface. This agrees with the findings several authors [Santhankumar et al., 2000].

[24] Mentioned that, restlessness and hyperactivity in fish may occur due to accumulation of acetylcholine at synaptic junctions which increased metabolic activities. [Rao, 1989] Stated that, consumption of more oxygen indicates higher metabolic rate. An initial increase in operculum movement frequency in chlorpyrifos exposed *Tilapia* reported by [Chindah et al., 2004] Mentioned that, the toxins exposure in fishes increases the operculum movement and was well established.

CONCLUSION

Plant based toxicity have been address as best alternative of chemical piscicide in aquaculture to control fish fry predators and unwanted fishes. Plant extracts are considered as desirable due to their properties of eco-friendliness, ease of availability, high efficiency, reduced toxicity to non-targeted animals and rapid biodegradability. The result provides the knowledge about medicinal plant species (*H. niger*) as potential piscicide.

ACKNOWLEDGEMENTS

Author is thankful to Prof. M.S. Naqvi, Principal Shia P.G. College, Lucknow for help provided during this study.

REFERENCES

- Charkoff M. Freshwater fish pond culture and management. A joint Peace Corps and Volunteers in Technical Assistance, Publication, MD. 1976.
- Kumar A, Prasad M, Mishra D, Srivastav SK, Srivastav AK. Toxicity of aqueous extract of *Euphorbia tirucalli* latex on catfish, *Heteropneustes fossilis*. Ecotoxicology and environmental safety. 2010; 73(7):1671-1673.
- Ramanujam SN, Dominic R. Median lethal concentration (LC50) of piscicidal plants and their utilization in aquaculture. Journal of applied Aquaculture. 2012; 24(4):326-333.
- Singh SK, Singh A. Toxic effect of *Euphorbia pulcherima* plant to fingerlings of *Labeo rohita* (Hamilton) in different culturing conditions. World Journal of Fish and Marine Science. 2009; 1(4):324-329.
- Pandey RK, Singh RN, Singh S, Singh NN, Das VK. Acute toxicity bioassay of dimethoate on freshwater air breathing catfish, *Heteropneustes fossilis* (Bloch). Journal of Environmental Biology. 2009; 30:437-440.

- Suely A, Zabed H, Ahmed ABA, Mohamad J, Nasiruddin MJ, Sahu N *et al.* Toxicological and hematological effect of *Terminalia arjuna* bark extract on a freshwater catfish, *Heteropneustes fossilis*. Fish Physiology Biochemistry, 2015; DOI 10.1007/s10695-015-0149-3.
- Yumnam JY, Tripathi OP. Ethnobotany: Plants use in fishing and hunting by *Adi* tribe of Arunachal Pradesh. Indian Journal of Traditional Knowledge. 2013; 21(1):157-161.
- Chiayvareesajja S, Chiayvareesajja J, Rittibhonbhun N, Wiriyachitra P. The toxicity of five native Thai plants to aquatic organisms. Asian Fisheries Science. 1997; 9(4):261-267.
- Ahmed M, Kundu G, Al-Mamun M, Sarkar S, Akter M, Khan M. Chromium (VI) induced acute toxicity and genotoxicity in freshwater stinging catfish, *Heteropneustes fossilis*. Ecotoxicology and environmental safety. 2013; 92:64-70.
- Joshi N, Sahu A. Histopathological changes in liver of *Heteropneustes fossilis* exposed to cypermethrin. Journal of Environmental Biology, 2007; 28:35-37.
- APHA, AWWA, WEF. Standard Methods for examination of water and wastewater. 22nd ed. Washington: American Public Health Association. 2012, 1360.
- Omoniyi I, Agbon AO, Sodunke SA. Effect of lethal and sub-lethal concentrations of Tobacco (*Nicotiana tobaccum*) leaf dust extract on weight and hematological changes in *Clarias gariepinus* (Burchell). Journal of applied sciences and environmental management. 2002; 6(2):37-41.
- Kavitha T, Gopalan AI, Lee KP, Park SY. Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon. 2012; 50(8):2994-3000.
- Winkaler EU, Santos TR, Machado-Neto JG, Martinez CB. Acute lethal and sublethal effects of neem leaf extract on the neotropical freshwater fish *Prochilodus lineatus*. comp biochem physiology c toxicology pharmacology. 2007; 145:236-244.
- Tiwari S, Singh A. Piscicidal and anti-acetylcholinesterase activity of *Euphorbia royleana* stem bark extracts against freshwater common predatory fish *Channa punctatus*. Environmental toxicology and pharmacology. 2004; 18(1):47-53.
- Mishra D, Srivastav SK, Srivastav AK. Effects of the insecticide cypermethrin on plasma calcium and ultimobranchial gland of the teleost *Heteropneustes fossilis*. Ecotoxicology and environmental safety. 2005;

60:193-197.

- Srivastava S, Singh N, Srivastava AK, Sinha R. Acute toxicity of malachite green and its effects on certain blood parameters of a catfish, *Heteropneustes fossilis*. Aquatic Toxicology. 1995; 31:241-247.
- Begum G, Vijayaraghavan S. *In vivo* toxicity of dimethoate on protein and transaminases in the liver tissue of fresh water fish *Clarias batrachus* (Linn.). Bulletin of Environmental Contamination and Toxicology. 1995; 54:370-375.
- Dikshith TSS, Raizada RB. Toxicity Evaluation of Dimethoate Technical in Fish. Report to Shaw Wallace and Co. India Ltd. 1981.
- Srivastava VK, Singh A. Studies of seasonal variation in toxicity of frequently used commercial organophosphate, carbamate and synthetic pyrethroids pesticides against freshwater fish *Channa punctatus* and behavioural responses to treated fish. Malaysian Applied Biology. 2001; 30:17-23.

- Rajput V, Gaur R. Toxicological study on *Clarias batrachus* caused by Croton and Mahua extract. Journal of Pharmacognosy and Phytochemistry. 2015; 3(5):32-34.
- Kulakkattolickal AT. Piscicidal plants of Nepal: Toxicity to air-breathing predatory fish (*Ophiocephalus punctatus, Clarias batrachus* and *Heteropneustes fossilis*) and the duration of risk to cultivated fish. Aquaculture. 1989; 78:285-292.
- Santhankumar M, Balaji M, Ramudu K. Effects of sub-lethal concentrations of Monocrotophos on the ethological responses of an air-breathing fish, *Anabas Testudineus* (Bloch). Ecology environment and conservation. 2000; 6:175-177.
- Fulton MH, Key PB. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects, Environmental Toxicology and Chemistry. 2001; 20:37-45.
- Rao DMR. Studies on the relative toxicity and metabolism of endosulfan to the Indian major carp, *Catla catla* with special reference to some biochemical changes included by the pesticide. Pesticide Biochemistry and Physiology. 1989; 33:220-229.
- Chindah AC, Sokoki FD, Vincent-Akpu I. Toxicity of an organophosphate pesticide (Chlorpyrifos) on a common Niger Delta wetland fish-*Tilapia guineensis* (Blecker, 1862). Journal of Applied Sciences and Environmental Management. 2004; 8:11-17.
- Yadav A, Neraliya S, Gopesh A. Acute toxicity levels and ethological responses of *Channa striatus* to fertilizer industrial wastewater. Journal of Environmental Biology. 2007; 28:159-162.
- Olik Jomang, S Behera, Dibakar Bhakta, Sanjeev Kumar, Snigdha Baksi and Anandamoy Mondal (2017). Toxic effect of *Zanthoxylum rhetsa* seed extracts on stinging catfish, *Heteropneustes fossilis* (Bloch, 1794), *Journal of Pharmacognosy and Phytochemistry*; 6(2): 221-225.
- Alizadah, A., Moshiri, M., Alizadah, A., and Mahdi, B.M. (2014). Black Henbane and its toxicity-A descriptive review, Avicenna J. Phytomed, 4(5), 297-311.

Corresponding author: Dr. T.S. Naqvi: Department of Zoology, Shia P.G. College, Lucknow, U.P., India,

Email: <u>tsnaqvi8@gmail.com</u>